Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Introduit le degré de liaison quadratique dans la théorie motivienne des nœuds, couvrant les bases de la théorie des nœuds, la géométrie algébrique et la théorie des intersections.
Couvre la classification des variétés p-adiques compactes en utilisant la formule C.o.V et explore les variétés algébriques lisses et le lemme de Hensel.