Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.
Explore les sujets d'apprentissage avancés du renforcement, y compris les politiques, les fonctions de valeur, la récursion de Bellman et le contrôle de la TD sur les politiques.
Explique les étapes d'affectation et de mise à jour dans le clustering K-means, la minimisation des fonctions de perte et les effets métriques de distance.
Introduit des méthodes de regroupement fondées sur des modèles utilisant des modèles de mélange et des variables latentes, avec des exemples pratiques sur les données d'iris.
Explore les méthodes et applications d'analyse de grappes dans l'analyse des données génomiques, y compris la classification, l'expression des gènes, la visualisation, les mesures de distance et les algorithmes de regroupement.
Explore Transductive Support Vector Machine pour le clustering semi-supervisé, visant une erreur nulle sur les points étiquetés et les points non étiquetés bien séparés.
Déplacez-vous dans des modèles à plusieurs niveaux, en mettant l'accent sur les structures de données imbriquées et la corrélation intra-classe, et explorez des modèles à angle aléatoire et à pente aléatoire.