Explore l'optimisation de portefeuille robuste sur le plan de la distribution et compare différentes approches et méthodes d'estimation pour l'évaluation de portefeuille.
Explore les modèles et les stratégies d'optimisation de portefeuille sous l'incertitude, en mettant l'accent sur des critères de décision tels que la valeur à risque et la variance moyenne fonctionnelle.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Couvre l'algorithme Branch & Bound pour une exploration efficace des solutions possibles et discute de la relaxation LP, de l'optimisation du portefeuille, de la programmation non linéaire et de divers problèmes d'optimisation.