Explore la sélection dynamique des portefeuilles, les fonctions d'utilité logarithmique, l'aversion au risque et les problèmes de contrôle optimaux sur les marchés financiers.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Explore la dualité lagrangienne dans l'optimisation convexe, en discutant de la dualité forte, des solutions duales et des applications pratiques dans les programmes de cônes de second ordre.