Explore la régression non paramétrique pour les réseaux, couvrant l'analyse des données d'objets, les graphiques de réseaux, les distances extrinsèques et les projections pratiques.
Explore la propagation de la croyance dans les modèles graphiques, les graphiques de facteurs, les exemples de verre de spin, les distributions de Boltzmann et les propriétés de coloration des graphiques.
Explore la maximisation de la diversité dans la sélection des documents, la détermination des cliques de graphes, les théorèmes sur le type négatif et l'optimisation convexe.
Explore l'entrelacement des familles de polynômes et des graphiques de Ramanujan à un côté, en se concentrant sur leurs propriétés et leurs méthodes de construction.
Explore la propagation des croyances sur les graphes, en mettant l'accent sur la normalisation, les relations récursives et le calcul itératif de la fonction de partition.