Explore le couplage des chaînes de Markov et la preuve du théorème ergodique, en mettant l'accent sur la convergence des distributions et les propriétés de la chaîne.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Couvre les probabilités de frappe dans les chaînes Markov avec des sous-ensembles disjoints, la fonction h(i), les théorèmes, les preuves, et le temps prévu pour frapper les calculs.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.