Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Couvre les méthodes d'optimisation avancées en utilisant des multiplicateurs Lagrange pour trouver l'extrémité des fonctions soumises à des contraintes.
Introduit les bases de l'algèbre linéaire, du calcul et de l'optimisation dans les espaces euclidien, en mettant l'accent sur la puissance de l'optimisation en tant qu'outil de modélisation.
Explore les contraintes, l'efficacité et la complexité de l'algèbre linéaire, en mettant l'accent sur la convexité et la complexité du pire des cas dans l'analyse algorithmique.
Couvre les méthodes de recherche de ligne de gradient et les techniques d'optimisation en mettant l'accent sur les conditions Wolfe et la définition positive.