Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore le transport optimal et les flux de gradient dans Rd, en mettant l'accent sur la convergence et le rôle des théorèmes de Lipschitz et Picard-Lindelf.
Introduit des ensembles et des fonctions convexes, en discutant des minimiseurs, des conditions d'optimalité et des caractérisations, ainsi que des exemples et des inégalités clés.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.