Revisite le théorème spectral pour les matrices symétriques, mettant l'accent sur les propriétés orthogonales diagonales et son équivalence avec les formes symétriques bilinéaires.
Couvre l'étude des groupes de traduction sur l'intervalle [0,1] avec différentes phases et le théorème de représentation de Riesz sur l'espace de Hilbert.