Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Introduit la régression linéaire, l'ajustement de la ligne de couverture, l'entraînement, les gradients et les fonctions multivariées, avec des exemples pratiques tels que l'achèvement du visage et la prédiction de l'âge.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Couvre l'analyse des données bivariées, la corrélation et les techniques de régression, y compris l'interprétation des coefficients et de la géométrie des moindres carrés.