Introduction au traitement des flux de données: concepts et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Explore la diffusion totale et l'analyse PDF dans la science des matériaux, couvrant la synthèse in situ, les techniques d'analyse de données et les applications dans les systèmes hôte-invité.
Couvre le processus d'étalonnage et d'analyse des données pour les mesures ConsO2, y compris la sélection des fichiers d'entrée et l'interprétation des données.