Couvre les concepts de limites et de colimits dans la catégorie des espaces topologiques, en mettant l'accent sur la relation entre la colimit et les constructions limites et les adjonctions.
Couvre la détermination des espaces vectoriels, le calcul des noyaux et des images, la définition des bases et la discussion des sous-espaces et des espaces vectoriels.
Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.
Discute des transformations de Laplace et de Fourier, en se concentrant sur leurs formules d'inversion et leurs applications dans la résolution d'équations différentielles.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.