Filtration de Kalman : estimation de l'état et prévision
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les variables aléatoires gaussiennes, les transformations d'affines et les systèmes linéaires entraînés par le bruit gaussien dans le contrôle multivariable.
Explore le filtre de Kalman variable dans le temps, l'estimation de l'état, les défis liés au conditionnement des sorties mesurées et l'importance des transformations affines.
Explore la théorie du filtrage Kalman, en mettant l'accent sur les innovations, les prédictions et les applications pratiques dans l'estimation de la position et de la vitesse du véhicule.
Explore les processus gaussiens, les systèmes linéaires, les transformations et les propriétés de bruit dans les applications de contrôle multivariables.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explore les filtres de Kalman linéarisés et étendus, illustrant leur application dans les systèmes non linéaires et l'estimation des paramètres inconnus.
Explore l'algorithme Kalman Predictor étendu et le filtre Kalman linéaire pour les systèmes de contrôle multivariables, en discutant des défis et des applications.
Explore les applications du filtrage de Kalman dans les systèmes de contrôle et de communication, en se concentrant sur l'estimation d'état et l'estimation de canal.