Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Explore la monotonie inverse dans les méthodes numériques pour les équations différentielles, en mettant l'accent sur les critères de stabilité et de convergence.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.