Introduit un mini-projet où les étudiants prédisent les précipitations à Pully en utilisant l'apprentissage automatique, en mettant l'accent sur la reproductibilité et la qualité du code.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Couvre la modélisation du système énergétique, l'optimisation, les scénarios, les prédictions, les complexités et les controverses dans les modèles énergétiques.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Présentation de K-Means Clustering, un algorithme simple mais efficace pour regrouper des points de données en clusters.
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.