Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Couvre les principes et les méthodes de regroupement dans l'apprentissage automatique, y compris les mesures de similarité, la projection de l'APC, les moyennes K et l'impact de l'initialisation.