Introduit des équations différentielles ordinaires, leur ordre, des solutions numériques et des applications pratiques dans divers domaines scientifiques.
Explique le schéma implicite d'Euler, une méthode de résolution numérique des équations différentielles, axée sur les propriétés de stabilité et de convergence.
Couvre les algorithmes pour résoudre des problèmes mathématiques à l'aide d'un ordinateur, y compris les équations non linéaires et les méthodes d'approximation numérique.
Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.