Statistiques non paramétriques: Estimation et optimisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'estimation de la densité du noyau axée sur la sélection de la bande passante, la malédiction de la dimensionnalité, le compromis entre les biais et les modèles paramétriques et non paramétriques.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Couvre les concepts fondamentaux de la statistique, y compris la théorie de l'estimation, les distributions et la loi des grands nombres, avec des exemples pratiques.