Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre une analyse SWOT de l'apprentissage automatique et de l'intelligence artificielle, explorant les forces, les faiblesses, les possibilités et les menaces sur le terrain.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Explore la convergence des réseaux neuronaux à travers l'adaptation des paramètres et l'alternance des regrets, en mettant l'accent sur l'événement NeurIPS 2023 à l'EPFL.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.