Couvre les méthodes d'éléments finis pour résoudre les problèmes de diffusion dans les milieux poreux, y compris le maillage, l'interpolation et les résidus pondérés.
Introduit des équations différentielles ordinaires, leur ordre, des solutions numériques et des applications pratiques dans divers domaines scientifiques.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.
Explore la stabilité transitoire dans la dynamique des systèmes de puissance, couvrant les équations algébriques, les modèles de générateurs et les techniques d'intégration numérique.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Couvre les méthodes de recherche de racines, en se concentrant sur les techniques de bisection et de sécante, leurs implémentations et les comparaisons de leurs taux de convergence.
Couvre les techniques d'intégration numérique, en se concentrant sur l'interpolation de Lagrange et diverses méthodes de quadrature pour l'approximation des intégrales.