Explore l'impact de l'apprentissage profond sur les humanités numériques, en se concentrant sur les systèmes de connaissances non conceptuels et les progrès récents de l'IA.
Explore la gestion des données du réseau, y compris les types de graphiques, les propriétés du réseau dans le monde réel et la mesure de l'importance des nœuds.
Plonge dans l'impact de l'apprentissage profond sur les systèmes de connaissances non conceptuels et les progrès dans les transformateurs et les réseaux antagonistes génératifs.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Explore la théorie des graphes dans la connectomique cérébrale, les applications d'IRM, la pertinence de l'analyse de réseau et les empreintes digitales individuelles.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Se penche sur l'apprentissage automatique amélioré par les graphiques, en mettant l'accent sur la détection des fraudes, la détection des logiciels malveillants et les systèmes de recommandation.