Explore des éléments de la théorie ergonomique, des transformations, des ensembles invariants et des exposants Lyapunov pour des cartes à une dimension.
Par Yakov Pesin se penche sur le phénomène essentiel de coexistence dans la dynamique hamiltonienne, explorant les types I et II et fournissant des exemples et des preuves.
Explore les applications de la théorie ergonomique à la combinatoire et la théorie des nombres, y compris le théorème de Szemerédi et le théorème d'Erdős-Kac.
Explore l'influence de la complexité sur les propriétés ergonomiques des systèmes symboliques, présentant le théorème Curtis-Hedlund-Lyndon et les constructions de sous-postes minimaux.
Explore les propriétés de mélange des systèmes de conservation de mesures infinies, en mettant l'accent sur les suspensions, les transformations de Govers et le gaz Lorentz.
Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.