Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Couvre la probabilité maximale d'estimation dans l'inférence statistique, en discutant des propriétés MLE, des exemples et de l'unicité dans les familles exponentielles.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.