Couvre l'approximation numérique des PDE, y compris les équations de Poisson et de la chaleur, les phénomènes de transport et les limites incompressibles.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Explore la diffusion d'un point de vue macroscopique, en mettant l'accent sur la dérivation de l'équation de diffusion par la conservation de masse et la loi de flux fixe.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.