Explore le Théorème d'Ehrenfest, reliant la mécanique quantique et classique à travers les valeurs d'attente et la dynamique de l'oscillateur harmonique.
Revisite le théorème spectral pour les matrices symétriques, mettant l'accent sur les propriétés orthogonales diagonales et son équivalence avec les formes symétriques bilinéaires.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore la diagonalisation des matrices symétriques à l'aide de vecteurs propres et de valeurs propres, en mettant l'accent sur l'orthogonalité et les valeurs propres réelles.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.
Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Explore le régime des oscillateurs forcés en mécanique vibratoire, en mettant l'accent sur les pulsations propres et une approche conservatrice généralisée.