Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.
Explore l'optimisation accélérée de l'ordre de jointage GPU dans les grands espaces de recherche, en tirant parti de la topologie graphique pour réduire les frais généraux de calcul.