Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore simulant des modèles de réseau neuronal à grande échelle et optimisant l'efficacité de la mémoire dans les simulations neuronales à l'aide de NEURON et de CoreNEURON.
Couvre l'architecture multiprocesseurs, l'informatique durable, l'impact de la formation sur les modèles d'IA et les principes fondamentaux de la programmation parallèle.
Explore l'intégration Monte-Carlo pour approximer les attentes et les variances à l'aide d'échantillonnage aléatoire et discute des composants d'erreur dans les modèles de choix conditionnel.