Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.
Explore l'équivalence homotopique dans les complexes en chaîne, mettant l'accent sur la construction d'objets de chemin et la caractérisation homotopique gauche/droite.
Explore la structure locale des groupes compacts locaux totalement déconnectés, couvrant des sous-groupes proportionnels, des achèvements, des automorphismes locaux et le quasi-centre.
Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.