Apprentissage profond pour les véhicules autonomes: modèles prédictifs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la vision par ordinateur dans l'IA incarnée, couvrant la navigation d'objets et la génération de vidéos à partir d'images uniques, en mettant l'accent sur la robustesse et la précision.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Explore des exemples contradictoires, des défenses et une robustesse certifiée dans l'apprentissage profond, y compris le lissage gaussien et les attaques perceptuelles.
Explore l'intelligence, la perception et les applications de l'IA dans les véhicules autonomes, en mettant l'accent sur la pensée rationnelle et l'intelligence sociale.
Explore le Dropout en tant que méthode de régularisation dans les réseaux neuronaux profonds, en mettant l'accent sur sa mise en œuvre pratique et son efficacité.