Apprentissage profond pour les véhicules autonomes: modèles prédictifs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit FIGLearn, une méthode d'apprentissage des filtres et des graphiques utilisant un transport optimal, surperformant l'état actuel de la technique.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.
Explore les raisons de l'abondance des points de selle dans l'optimisation de l'apprentissage en profondeur, en mettant l'accent sur les arguments statistiques et géométriques.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Explore l'influence de la linguistique computationnelle sur les architectures d'apprentissage profond, couvrant les formalismes grammaticaux, le connexionnisme, la liaison variable et les orientations futures.
Explore les robots volants interactifs et respectueux de l'environnement, couvrant la prévision du vent, le vol autonome, les stratégies de contrôle, les défis auxquels sont confrontés les drones omnidirectionnels et les technologies de pointe.