Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Couvre PCA et LDA pour la réduction de dimensionnalité, expliquant la maximisation de la variance, les problèmes de vecteurs propres et les avantages de Kernel PCA pour les données non linéaires.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.