Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la navigation bio-inspirée, les réseaux graphes convolutionnels, et des architectures robustes de transformateur de vision pour l'intelligence visuelle.
Explore l'influence de la linguistique computationnelle sur les architectures d'apprentissage profond, couvrant les formalismes grammaticaux, le connexionnisme, la liaison variable et les orientations futures.
Il s'agit de numériser les documents historiques, de normaliser la structure des documents et d'appliquer les réseaux neuraux à la reconnaissance du texte et à la segmentation de l'image.
Introduit FIGLearn, une méthode d'apprentissage des filtres et des graphiques utilisant un transport optimal, surperformant l'état actuel de la technique.
Se penche sur le transfert de style photographique, montrant comment les algorithmes peuvent transformer les images pour imiter différents styles et améliorer les photos.
Explore les robots volants interactifs et respectueux de l'environnement, couvrant la prévision du vent, le vol autonome, les stratégies de contrôle, les défis auxquels sont confrontés les drones omnidirectionnels et les technologies de pointe.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Explore les transformateurs en intelligence visuelle, en se concentrant sur la détection d'objets, la synthèse d'images et la fusion de fonctionnalités.
Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.
Explore les applications d'apprentissage automatique dans l'analyse du système terrestre à l'aide de données de télédétection, en mettant l'accent sur l'interprétation automatique de l'image et l'IA explicable.