Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Explore la somme des polynômes carrés et la programmation semi-définie dans l'optimisation polynomiale, permettant l'approximation des polynômes non convexes avec SDP convexe.