Couvre la récapitulation de Support Vector Regression avec un accent sur l'optimisation convexe et son équivalence à la régression du processus gaussien.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Explore la dualité lagrangienne dans l'optimisation convexe, en discutant de la dualité forte, des solutions duales et des applications pratiques dans les programmes de cônes de second ordre.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.