Explore l'estimation de la variance, la création d'estimateurs personnels, la correction du biais et la compréhension de l'erreur carrée moyenne dans l'analyse statistique.
Explique les estimateurs statistiques pour les variables aléatoires et les distributions gaussiennes, en se concentrant sur les fonctions d'erreur pour l'intégration.
Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Introduit une estimation de la probabilité maximale pour l'estimation des paramètres statistiques, couvrant le biais, la variance et l'erreur carrée moyenne.