Interprétation statistique des réseaux de neurones artificiels
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.