Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.