Explore les valeurs propres et les vecteurs propres, démontrant leur importance dans l'algèbre linéaire et leur application dans la résolution de systèmes d'équations.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Couvre les concepts fondamentaux de l'algèbre linéaire, y compris les équations linéaires, les opérations matricielles, les déterminants et les espaces vectoriels.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.