Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Explore l'impact de la configuration spatiale sur l'enseignement des interactions dans les salles de classe, l'analyse de la disposition des sièges et des mouvements des enseignants.
Explore les défis et les solutions pour l'apprentissage évolutif et fiable dans des réseaux hétérogènes, en mettant l'accent sur l'hétérogénéité des données, la vie privée, l'équité et la robustesse.
Explore la recherche de bugs, la vérification et l'utilisation d'approches aidées à l'apprentissage dans le raisonnement de programme, montrant des exemples comme le bug Heartbleed et le raisonnement bayésien différentiel.