Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les fonctions de perte, la descente de gradient et l'impact de la taille des pas sur l'optimisation dans les modèles d'apprentissage automatique, en soulignant l'équilibre délicat requis pour une convergence efficace.
Introduit des bases d'optimisation, couvrant la régression logistique, les dérivés, les fonctions convexes, la descente de gradient et les méthodes de second ordre.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Volkan Cevher se penche sur les mathématiques de l’apprentissage profond, explorant la complexité des modèles, les compromis de risque et le mystère de la généralisation.
Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.
Explore l'apprentissage machine contradictoire, couvrant la génération d'exemples contradictoires, les défis de robustesse et des techniques telles que la méthode Fast Gradient Sign.