Fournit un examen des concepts d'algèbre linéaire cruciaux pour l'optimisation convexe, couvrant des sujets tels que les normes vectorielles, les valeurs propres et les matrices semi-définies positives.
Couvre les concepts fondamentaux de l'algèbre linéaire, y compris les équations linéaires, les opérations matricielles, les déterminants et les espaces vectoriels.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Explore les valeurs propres et les vecteurs propres, démontrant leur importance dans l'algèbre linéaire et leur application dans la résolution de systèmes d'équations.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.