Réseaux de neurones convolutifs: astuces de formation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la moyenne de voisinage, le lissage gaussien, le filtrage médian, l'amélioration du contraste et la détection des bords dans le traitement d'image.
Explore le traitement d'images en 2D et 3D, couvrant les conditions d'imagerie idéales, l'analyse d'histogrammes, les outils, les étapes de reconstruction 3D et la visualisation.
Explore la composition, la mise en commun, la continuité, la dénigrement et les architectures CNN populaires pour la segmentation de l'image dans le traitement de l'image.
Explore les concepts de vision stéréoscopique tels que les occlusions, l'impact de la taille de la fenêtre, la stéréo multivue, la reconstruction dynamique de la forme et la segmentation basée sur des graphiques.
Explore la stéréo géométrique, la géométrie épipolaire, les méthodes de corrélation, les occlusions et les défis de mise en œuvre en temps réel dans les systèmes de vision stéréoscopique.
Explore les avantages des données synthétiques dans la vision informatique à travers des modèles génératifs mimiking images réelles avec faible écart sim2réel.