Explore l'entropie, le caractère aléatoire et la quantification de l'information dans l'analyse des données biologiques, y compris les neurosciences et la prédiction de la structure des protéines.
Explore les informations mutuelles pour quantifier la dépendance statistique entre les variables et déduire des distributions de probabilité à partir de données.
Couvre les mesures d'information telles que l'entropie, l'entropie articulaire et l'information mutuelle dans la théorie de l'information et le traitement des données.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Explore les promenades aléatoires, le modèle Moran, la chimiotaxie bactérienne, l'entropie, la théorie de l'information et les sites en coévolution dans les protéines.