Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Explore la théorie des graphes dans la connectomique cérébrale, les applications d'IRM, la pertinence de l'analyse de réseau et les empreintes digitales individuelles.
Explore les méthodes d'optimisation primaire-duelle, se concentrant sur les approches lagrangiennes et diverses méthodes comme la pénalité, la lagrangien augmentée, et les techniques de fractionnement.
Explore l'intégration de la connectivité cérébrale pour décoder et interpréter l'activité cérébrale à l'aide du traitement des signaux graphiques et des réseaux résiduels spectraux.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.