Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Couvre le calcul des nerfs et la réalisation géométrique dans des ensembles simpliciaux, ainsi que des foncteurs entrant et sortant de la catégorie des ensembles simpliciaux.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.
Présente deux exemples fondamentaux d'ensembles simpliciaux: le nerf d'une petite catégorie et l'ensemble simplicial singulier d'un espace topologique.