Fournit un aperçu des groupes fondamentaux en topologie et de leurs applications, en se concentrant sur le théorème de Seifert-van Kampen et ses implications pour le calcul des groupes fondamentaux.
Discute des transformations de Laplace et de Fourier, en se concentrant sur leurs formules d'inversion et leurs applications dans la résolution d'équations différentielles.
Discute de la classification des surfaces et de leurs groupes fondamentaux en utilisant le théorème de Seifert-van Kampen et les présentations polygonales.
Explore la construction d'objets cylindres dans des complexes de chaîne sur un champ, en mettant l'accent sur les complexes d'homotopie gauche et de chaîne d'intervalle.