Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.