Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Explore l'apprentissage visuel sûr et efficace en matière de données pour la robotique, couvrant la théorie du contrôle, les systèmes de perception, l'apprentissage de bout en bout et les politiques d'experts.
Explore l'apprentissage sécuritaire en robotique, couvrant l'état de l'art, les défis ouverts et la vision sur le terrain, soulignant l'importance de la collaboration interdisciplinaire.
Introduit l'apprentissage par renforcement, couvrant ses définitions, ses applications et ses fondements théoriques, tout en décrivant la structure et les objectifs du cours.
Explore l'impact des paramètres P, D et I sur le contrôle de la robotique, y compris les gains, les encodeurs, le réglage des paramètres PID et les stratégies de contrôle.
Explore les processus stochastiques contrôlés, en se concentrant sur l'analyse, le comportement et l'optimisation, en utilisant la programmation dynamique pour résoudre les problèmes du monde réel.
Explore l'apprentissage et le contrôle des systèmes complexes, en abordant les défis et les possibilités en matière de technologie et de recherche interdisciplinaire.
Explore le contrôle de l'agrégation protéique par des stratégies optimales, des inhibiteurs et une régulation spatiale à l'aide de compartiments liquides, éclairant les interventions médicamenteuses et la dynamique des agrégats.