Explore la théorie du contrôle quadratique optimal linéaire, couvrant les problèmes FH-LQ et IH-LQ et l'importance de l'observabilité dans les systèmes de contrôle.
Introduit une théorie de contrôle optimale, couvrant les modèles, la discrétisation, les mesures, les conditions lagrangiennes, KKT et l'invertibilité.
Explore l'accélération de l'algorithme d'itération de valeur en utilisant la théorie de contrôle et les techniques de fractionnement de matrice pour atteindre une convergence plus rapide.
Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore l'état de la recherche robotique, couvrant les défis interdisciplinaires, les technologies de capteurs et les architectures de collaboration homme-robot.