Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Explore l'échantillonnage de l'ensemble canonique, des fluctuations de température, de la distribution lagrangienne étendue et de Maxwell-Boltzmann dans les simulations de dynamique moléculaire.
Couvre le calcul des observables au moyen de distributions de probabilités et l'importance d'un échantillonnage efficace de l'importance dans les simulations.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.